An alternative role of C1q in bacterial infections: facilitating Streptococcus pneumoniae adherence and invasion of host cells.
نویسندگان
چکیده
Streptococcus pneumoniae (pneumococcus) is a major human pathogen, which evolved numerous successful strategies to colonize the host. In this study, we report a novel mechanism of pneumococcal-host interaction, whereby pneumococci use a host complement protein C1q, primarily involved in the host-defense mechanism, for colonization and subsequent dissemination. Using cell-culture infection assays and confocal microscopy, we observed that pneumococcal surface-bound C1q significantly enhanced pneumococcal adherence to and invasion of host epithelial and endothelial cells. Flow cytometry demonstrated a direct, Ab-independent binding of purified C1q to various clinical isolates of pneumococci. This interaction was seemingly capsule serotype independent and mediated by the bacterial surface-exposed proteins, as pretreatment of pneumococci with pronase E but not sodium periodate significantly reduced C1q binding. Moreover, similar binding was observed using C1 complex as the source of C1q. Furthermore, our data show that C1q bound to the pneumococcal surface through the globular heads and with the host cell-surface receptor(s)/glycosaminoglycans via its N-terminal collagen-like stalk, as the presence of C1q N-terminal fragment and low m.w. heparin but not the C-terminal globular heads blocked C1q-mediated pneumococcal adherence to host cells. Taken together, we demonstrate for the first time, to our knowledge, a unique function of complement protein C1q, as a molecular bridge between pneumococci and the host, which promotes bacterial cellular adherence and invasion. Nevertheless, in some conditions, this mechanism could be also beneficial for the host as it may result in uptake and clearance of the bacteria.
منابع مشابه
Streptococcus pneumoniae endopeptidase O (PepO) is a multifunctional plasminogen- and fibronectin-binding protein, facilitating evasion of innate immunity and invasion of host cells.
Streptococcus pneumoniae infections remain a major cause of morbidity and mortality worldwide. Therefore a detailed understanding and characterization of the mechanism of host cell colonization and dissemination is critical to gain control over this versatile pathogen. Here we identified a novel 72-kDa pneumococcal protein endopeptidase O (PepO), as a plasminogen- and fibronectin-binding protei...
متن کاملPolymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase.
Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and...
متن کاملThe Triggering Receptor Expressed on Myeloid Cells 2 Inhibits Complement Component 1q Effector Mechanisms and Exerts Detrimental Effects during Pneumococcal Pneumonia
Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM...
متن کاملFactor H binding to PspC of Streptococcus pneumoniae increases adherence to human cell lines in vitro and enhances invasion of mouse lungs in vivo.
Pneumococcal surface protein C (PspC) binds to both human secretory immunoglobulin A (sIgA) and complement factor H (FH). FH, a regulator of the alternative pathway of complement, can also mediate adherence of different host cells. Since PspC contributes to adherence and invasion of host cells, we hypothesized that the interaction of PspC with FH may also mediate adherence of pneumococci to hum...
متن کاملAnchors away: contribution of a glycolipid anchor to bacterial invasion of host cells.
Group B Streptococcus (GBS) is an important cause of infections, including meningitis. The molecular events underlying its pathogenesis are poorly understood. A study in this issue of the JCI reports that the GBS invasion-associated gene (iagA) contributes to meningeal infection and virulence by facilitating invasion of the cells that compose the blood-brain barrier and of other host cells. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 191 8 شماره
صفحات -
تاریخ انتشار 2013